Wave Propagation in Multicomponent Flow Models

نویسندگان

  • Tore Flåtten
  • Alexandre Morin
  • Svend Tollak Munkejord
چکیده

Abstract. We consider systems of hyperbolic balance laws governing flows of an arbitrary number of components equipped with general equations of state. The components are assumed to be immiscible. We compare two such models; one in which thermal equilibrium is attained trough a relaxation procedure, and a fully relaxed model in which equal temperatures are instantaneously imposed. We describe how the relaxation procedure may be made consistent with the second law of thermodynamics. Exact wave velocities for both models are obtained and compared. In particular, our formulation directly proves a general subcharacteristic condition: For an arbitrary number of components and thermodynamically stable equations of state, the mixture sonic velocity of the relaxed system can never exceed the sonic velocity of the relaxation system.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical simulation of flood wave propagation due to failure of dam watersheds in fluent model

By numerical simulation of the phenomenon of failure of dams and the flow of their flow, it is possible to design more precisely the structures and their location. The purpose of this study was to investigate the wave propagation phenomenon due to the failure of the rocky mortar-watering dam in the Marivan sub-basin of Zarivar in two-dimensional and three-dimensional models using the Fluent mod...

متن کامل

Three Dimensional Numerical Simulation of Tsunami Generation and Propagation Due to Makran Subduction and run-up on Chabahar Bay and Makran Coasts

Makran subduction located at the northwest of the Indian Ocean nearby the southern coast of Iran and Pakistan. Makran subduction is the source of tsunamis that threaten southern coast of Iran. In this article, generation and propagation of 1945’s tsunami initiated by Makran subduction is simulated. For the three dimensional generation of the wave, advanced algorithm of Okada is adopted. The CFD...

متن کامل

Wave Propagation Analysis of CNT Reinforced Composite Micro-Tube Conveying Viscose Fluid in Visco-Pasternak Foundation Under 2D Multi-Physical Fields

In this research, wave propagation analysis in polymeric smart nanocomposite micro-tubes reinforced by single-walled carbon nanotubes (SWCNT) conveying fluid is studied. The surrounded elastic medium is simulated by visco-Pasternak model while the composite micro-tube undergoes electro-magneto-mechanical fields. By means of micromechanics method, the constitutive structural coefficients of nano...

متن کامل

Numerical investigation of free surface flood wave and solitary wave using incompressible SPH method

Simulation of free surface flow and sudden wave profile are recognized as the most challenging problem in computational hydraulics. Several Eulerian/Lagrangian approaches and models can be implemented for simulating such phenomena in which the smoothed particle hydrodynamics method (SPH) is categorized as a proper candidate. The incompressible SPH (ISPH) method hires a precise incompressible hy...

متن کامل

A wave-propagation based volume tracking method for compressible multicomponent flow in two space dimensions

We present a simple volume-of-fluid approach to interface tracking for inviscid compressible multicomponent flow problems in two space dimensions. The algorithm uses a uniform Cartesian grid with some grid cells subdivided by tracked interfaces, approximately aligned with the material interfaces in the flow field. A standard volume-moving procedure that consists of two basic steps: (1) the upda...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM Journal of Applied Mathematics

دوره 70  شماره 

صفحات  -

تاریخ انتشار 2010